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The relations between the proposed method for analyzing finite periodic structures and the theory
of infinite periodic structures are discussed. It is shown that the proposed method is in fact a very
useful approximate approach for calculating not only the natural frequencies and modes of finite
periodic structures but also the pass-bands of infinite periodic structures as a function of the phase
constant.

The pass-bands of various periodic beam structures are calculated. The discussion focuses on the
influence of stiffeners on the pass-bands of the structures, and provides some useful indications of
the possibilities and limitations of tuning a pass-band of a periodically stiffened structure by means
of tuning the properties of the stiffeners. The example calculations show that it is possible to use
stiffeners to change the location and width of the lower order pass-bands.
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1. INTRODUCTION

A method of analyzing finite structures with regularly spaced stiffeners and/or supports
was presented by the authors in reference [1]. The method established was based on the
Rayleigh–Ritz and extended Rayleigh–Ritz methods and the coupling relationships among
the assumed sinusoidal displacement functions found in a finite periodic structure. In this
paper, the method is further discussed in the context of periodic structure theory.

In periodic structure theory, a periodic structure is assumed to be infinitely long. It is
known [2] that, when a harmonic wave is propagating along such a structure, the vibration
states at one end of an element is related to those at the other end by the equation

{w}r+1 =es{w}r , (1)

where {w}r is the state vector at the rth joint, which contains all vibration variables such
as displacement, slope, moment and force for a beam type structure. s is the propagation
constant. Wave propagation can occur without attenuation if s is purely imaginary,
s=jm, j=z−1. m represents the phase difference between vibration states over an
element and is thus called the phase constant. The principle value of m is between 0 and
p, and the corresponding frequency bands are called pass-bands or propagation zones. The
frequency regions between pass-bands are called stop-bands or attenuation zones, in which
all possible values of s are complex. Once the transfer matrix between two state vectors
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over an element is established, the eigenvalue equations can be derived by using the above
equation and the propagation constant can be solved as a function of frequency, or vice
versus. Various techniques have been developed to establish the eigenequation. For a beam
type structure, it can be analytically derived by using characteristic receptance functions
[2]. For more complicated structures, e.g., orthogonally stiffened plates and shells,
approximate methods such as the finite element method [3] and the hierarchical finite
element technique [4] were used. However, to use these techniques and to interpret the
results requires one to have a good understanding of the wave theory and its special
characteristics in a periodic structure.

The present analysis based on a finite periodic structural model differs from the periodic
structure theory in that, for a free vibration problem, it directly calculates the natural
frequencies and modes of the model. It is derived on the basis of classical structural
dynamics and the coupling relationships found in the structure. The method is simple in
concept and in application procedure. However, there are many situations, especially in
the cases in which the number of period members is not small, in which it is frequency
pass-bands that are more interesting. Although the natural frequencies and normal modes
of a finite periodic structure can be calculated from the propagation constants [5], the
reverse is not necessarily true. It will be shown to be very useful that the calculated
frequencies and modes can be interpreted from the point of view of periodic structure
theory. This is the main focus of the discussion in this paper. It will be shown that the
present method can be used to calculate the pass-bands of a periodic structure which is
infinitely long. However, the structures considered in this paper are periodic structures of
symmetric element type. For a periodic structure of non-symmetric element type,
additional couplings exist among the assumed displacement functions, in addition to those
discussed in reference [1]. The effect of this is discussed in reference [7], where the present
analysis is applied to stiffened plates and shells.

2. PERIODIC STRUCTURE ANALYSIS AND THE FINITE PERIODIC STRUCTURE
MODEL

Mead [6] showed that the displacement of a positive-going wave in the pass-bands of
a periodic beam structure may be expressed in the form

w+(x)= s
a

n=−a

An ej(vt−(m+2np)x/l), (2)

while that for a negative-going wave is

w−(x)= s
a

n=−a

Bn ej(vt+(m+2np)x/l), (3)

where l is the length of a periodic element. When a finite periodic structure is in free
vibration, the positive-going wave, for example, will be reflected from the right extremity
and will generate a negative-going wave. Both waves, plus some near field waves depending
on the boundary at the end, will form a standing wave. When the two extreme ends of
a beam are simply supported, each component in equation (2) will produce a
negative-going wave which has an opposite sign but equal magnitude. So do the
components of a negative-going wave at the other end. Thus, this yields

Bn =−An , (4)
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and a standing wave is formed given by

w(x)=w+(x)+w−(x)= s
a

n=−a

An [e−j(m+2np)x/l −ej(m+2np)x/l]

= s
a

n=−a

−2jAn sin (m+2np)x/l. (5)

Now let us look at the displacement expressions in which only the functions defined by
the coupling relations (equation (12) in reference [1]) are retained. For a beam containing
Nb elements, this gives

w(x)= s
a

i=1

wmi sin (mipx/Nbl), (6)

with m1 =m, m2 =2Nb −m, m3 =2Nb +m, m4 =4Nb −m, etc. If we let

wm1 =−2jA0,

wm3 =−2jA1, wm2 =2jA−1,

wm5 =−2jA2, wm4 =2jA−2,

. . . , etc.

and notice that, for i=1, 3, 5, . . . , a,

sin (mipx/Nbl)= sin (mp/Nb +2np)x/l, for n=0, 1, 2, . . . , a;

and for i=2, 4, 6, . . . , a,

sin (mipx/Nbl)=−sin (mp/Nb +2np)x/l, for n=−1, −2, −3, . . . , −a;

then equation (6) can be rewritten as

w(x)= s
a

n=−a

−2jAn sin (mp/Nb +2np)x/l (7)

Comparing equations (5) and (7), it can be seen that these two equations are the same
except that m in equation (5) is replaced by mp/Nb in equation (7). This means that in a
simply supported periodic beam, only a certain number of propagating waves can exist
and form standing waves in free vibration. These waves correspond to the propagation
constant m taking the values of mp/Nb , for m=1, 2, . . . , Nb and 2Nb , while for a beam
of the same type but infinitely long, the propagation constant may take any value between
0 and p in a frequency pass-band. This has two implications. First, it is clearly in agreement
with what was proved by Sen Gupta [5] about the relations between the natural frequencies
of a finite periodic system and the pass-bands of the corresponding infinite system. In each
pass-band, there are, in general, Nb natural frequencies for a periodic structure containing
Nb periodic elements. The values of these frequencies correspond to the phase constant m

being equally divided by Nb between 0 and p. Each of the coupling groups of
m1 =1, 2, . . . , Nb −1 has one frequency in each of the bands, while only one frequency
is contributed by either m1 =Nb or m1 =2Nb coupling group in each band. Second, if Nb

is taken to be large enough to provide an adequate resolution of m, the proposed method
can be used as an approximate method to calculate the frequency pass-bands or the
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propagation zones of an infinite periodic structure as the function of phase constant. In
other words, the proposed method provides an approximate method that can be used to
study periodic structure models of not only finite but also infinite length. The procedure
of the calculation is straightforward. It involves: (1) selection of a set of appropriate
displacement functions (sine or cosine functions) based on the extreme end conditions; (2)
formulation of the mass and stiffness matrices of any given coupling group, following the
standard procedure of Rayleigh–Ritz analysis; (3) application of the equivalent constraints
of the coupling group if the structure is periodically supported; and (4) calculate the natural
frequencies as m1 =1 to Nb and 2Nb , which corresponds to m=0 to p.

4. THE PASS-BANDS OF PERIODICALLY SUPPORTED BEAMS

In order to demonstrate the above discussion, the method is first applied to two
periodically supported beams, beam (a) and beam (b). Beam (a) is a periodically simply
supported beam, and beam (b) is a periodically sliding supported beam. The typical
elements of these two beam structures are shown in Figures 1(a) and 1(b), respectively.
As discussed in the above section, the frequency pass-bands can be calculated using the

Figure 1. The elements of five periodic beams. (a) Periodically simply supported beam; (b) periodically sliding
supported beam; (c) periodically simply supported beam with Mr and Kr stiffeners; (d) periodically sliding
supported beam with Mt and Kt stiffeners; (e) periodically stiffened beam with Mt , Mr , Kt and Kr stiffeners.
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Figure 2. The pass-bands of periodically supported beams. ····, Periodically simply supported beam, beam (a);
-----, periodically sliding supported beam, beam (b).

present method, with Nb being set to a large value. The first three pass-bands of these two
beams are thus calculated with Nb =200 and stepping m1 from 1 to 200. The results are
shown in Figure 2. A non-dimensional freqeuncy, l=(v2rA/(EI))0·25l/p, is used, which is
also used throughout the discussions in this paper. Some of the natural frequencies of
five-bay periodic beams are listed in Table 1. The periodically simply supported beam was
the one discussed in section 4 of reference [1], where a comparison was given with the
results calculated by Sen Gupta [5]. For beam (b), a series of cosine functions is used as
the assumed displacement functions. The expressions of the mass and stiffness matrices and
the equivalent constraints are given in Appendix A.

T 1

The natural frequencies of finite periodically supported beams: Nb =5

First pass-band Second pass-band Third pass-band
ZxxxxCxxxxV ZxxxxCxxxxV ZxxxxCxxxxV

m1 Beam (b) Beam (a) Beam (b) Beam (a) Beam (b) Beam (a)

10 0·0 2·0 2·0
1 0·4872 1·4489 1·9577 2·0565 2·6825 3·4502
2 0·6899 1·3222 1·8561 2·1807 2·7749 3·3242
3 0·8428 1·1780 1·7353 2·3215 2·8803 3·1822
4 0·9546 1·0533 1·6307 2·4460 2·9657 3·0570
5 1·0 1·0 3·0 3·0

Beam (a): periodically simple supported beam.
Beam (b): periodically sliding supported beam.
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T 2

The bounding frequencies of periodically supported beams corresponding to the frequencies
of a locked element

Beam (a) Beam (b)
M* Band 1, Band 2, Band 3, Band 2, Band 3,

m1 =1 m1 =1999 m1 =1 m1 =1999 m1 =1

9 1·506215 2·502797 3·507794 1·586236 2·643222
21 1·505666 2·499983 3·500633 1·536725 2·552995
31 1·505633 2·499824 3·500204 1·526214 2·534664
41 1·505625 2·499783 3·500942 1·521015 2·525720
51 1·505622 2·499768 3·500054 1·517912 2·520423

Exact 1·5 2·5 3·5 1·5 2·5
d 0·4% Q0·01% Q0·01% 1·7% 1·4%

Beam (a): periodically simple supported beam.
Beam (b): periodically sliding supported beam.
M* vs the number of coupled terms used in the calculation.

These two systems are of the simplest mono-coupled periodical beam type, since there
is only one co-ordinate, slope or deflection at each end of an element. Mead [4] has shown
that the two bounding frequencies of a pass-band of a mono-coupled system consisting
of symmetric elements are the natural frequencies of a single element with its both ends
either free or locked. The elements of these two beams have the same natural frequencies
when their ends are free or locked. However, the propagation waves in the two systems
must have opposite natures at the supported points. Therefore one system’s pass-band is
the other system’s stop-band, as shown in Figure 2. The bounding frequencies at which
the frequency curves of the two systems join together are the natural frequencies of a single
element when it is free. These frequencies can be calculated accurately with the coupling
groups of m1 =Nb and 2Nb . The bounding frequencies at the other ends correspond to the
natural frequencies of a locked element. These frequencies can only be estimated
approximately by letting m=mp/Nb very close to 0 and p, say, m=1 or 1999 with
Nb =2000. Some of the bounding frequencies thus calculated are listed in Table 2. The
last row shows the percentage errors of the results calculated with M* (the number of the
coupled functions used) equal 31. This value of M* is used in Figure 2 and in the rest of
the discussions in this paper.

The pass-bands of the above two systems with stiffeners added at the locations of the
supported points are also calculated. The elements of the stiffened beam systems are shown
in Figures 1(c) and 1(d), respectively. Beam (c) is beam (a) with a rotational inertia Ir /2
and a rotational spring Kr /2 being added at both ends of its elements. Beam (d) is beam
(b) with an added mass Mt /2 and a transverse stiffness Kt /2 at both ends. The actual values
of the stiffeners used in the calculation are as follows: Mt =0·25rAl, Ir =0·25rAl3,
Kt =4EI/l3 and Kr =4EI/l, with r=8000 kg/m3, E=2·13 e11 N/m2, I=1·08 e−6 m4,
A=3·6e−3 m2 and l=0·9 m. These values are also used in the rest of the calculations.

The first four pass-bands of beam (c) are shown in Figure 3 alongside with those of beam
(a). It is clear that by adding stiffeners the natural frequencies of a free element of beam
(c) differ from those of beam (a). However, the natural frequencies of locked elements are
unchanged. Thus the pass-bands of beam (c) are such that they have one end coinciding
with the pass-bands of beam (a) and the other end moving to a new position. This is
because that there is no rotational motion at the supported points in the wave motion
pattern in one end of a pass-band; the importance of the rotational motion gradually
increases towards the other end of the pass-band and therefore the effect of stiffeners are
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felt. However, the first band is exceptional, and it is additional to those of beam (a). It
is bounded by two natural frequencies of a free element, which are dominated by the
stiffener’s resonant vibration. The motion in this band is dominated by the rotational
motion of the stiffeners, with the phase difference between two adjacent stiffeners varying
from m=0 to m= p. Similar behaviour can be observed from Figure 4 for beam (d),
compared with that of beam (b). However, in this case there is no additional band in the
low frequency range. This is because the first band of beam (b) is already bounded by two
natural frequencies of a free element, and adding stiffeners only moves them to different
locations. The motion in the first band towards m=0 is dominated by the stiffeners’
vertical motions. The bounding frequency at that end is determined by the ratio of the
transverse stiffness Kt to the transverse mass Mt and the mass of a beam element. Towards
the other end (m= p), the beam bending stiffness becomes important, since the two ends
of an element are moving out of phase. In general, the effect of adding stiffeners is such
that the pass-bands become narrower than those of unstiffened ones in the cases studied.

5. THE PASS-BANDS OF A PERIODICALLY STIFFENED BEAM

Having studied the pass-bands of periodically supported beams, we are now ready to
investigate the pass-bands of a periodically stiffened beam. The beam, beam (e), is a
combination of beams (c) and (d), but without constraints. An element of the system is
shown in Figure 1(e). It has both slope and deflection degrees of freedom at each end and
therefore is a multi-coupled periodic system.

Figure 3. The pass-bands of a periodically simply supported beam with stiffeners. ——, Simply supported beam
with Ir and Kr , beam (c); ····, simply supported beam without stiffener, beam (a).
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Figure 4. The pass-bands of a periodically sliding supported beam with stiffeners. ——, sliding supported beam
with Mt and Kt , beam (d); ····, sliding supported beam without stiffener, beam (b).

If the two extreme ends of the beam are assumed to be simply supported, the natural
frequencies of the structure may be calculated using sine functions as the assumed
displacement functions. The expressions for the mass and stiffness matrices were given in
reference [1]. The frequencies are plotted in Figure 5 as a function of the phase constant
m=mp/Nb , together with the pass-bands of beams (c) and (d). The first pass-band of beam
(e) is bounded by the lower bounding frequencies of the first bands of beams (c) and (d).
This indicates that the dominant motion in the band changes from transverse vibration
into rotational vibration of the stiffeners as the propagation constant changes from 0 to
p. The two ends (at m=0 and m= p) of the second pass-band coincide with the upper
bounding frequencies of the first band of beams (c) and (d), but it is not bounded by them.
The maximum value of the frequency curve is evidently not at either end, but in between.
This indicates that for a multi-coupled system the bounding frequency of a pass-band may
not necessarily occur at m=0 or m= p. In other words, the frequency curve in a pass-band
may not monotonically increase or decrease as m increases. The bounding frequencies of
other bands occur at m=0 or m= p and therefore correspond to the natural frequencies
of a single element with the two different types of co-ordinate, slope or deflection,
appropriately locked or free; i.e., the natural frequencies of a free element of beam (c) or
beam (d). This can be seen from the third and fourth pass-bands, which are bounded by
both upper bounds of the second or third pass-bands of beams (c) and (d), respectively.
It is important to notice that these two bands, and indeed the higher bands as well, are
close to those of beam (d) instead of beam (c). This indicates that the motion in these bands
is very much dominated by inter-stiffener motion, while the stiffeners are moving
predominantly up and down close to the motion in beam (d).
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The pass-bands of beam (e) shown in Figure 5 are calculated using sine functions; i.e.,
the two extreme ends are assumed to be simply supported. Since a pass-band of a periodic
structure should be independent of the extreme end conditions (indeed, there should not
be an end), there is no reason why the cosine functions should not be used and still give
the same results. In other words, the same pass-band should also be calculated by assuming
the two extreme ends to be sliding supported. This is of course true, and its is to be proved
in the following.

For a simply supported beam using sine functions and a sliding supported beam using
cosine functions, the beam mass and stiffness matrices are diagonal and are the same for
both beams except for m=0, which only exists for the sliding supported beam. For the
coupling groups of m1 =1 to Nb −1, the mass and stiffness matrices of the stiffeners for
the simply supported beam can be expressed as (combining equations (8) and (12a) of
reference [1]),

[M]S =[Mij ], with Mij =0·5Nb{Mt (−1)i− j + Ir (p/L)2mimj}, (8a)

[K]S =[Kij ], with Kij =0·5Nb{Kt (−1)i− j +Kr (p/L)2mimj}. (8b)

Those for the sliding supported beam are

[M]C =[Mij ], with Mij =0·5Nb{Mt + Ir (p/L)2mimj (−1)i− j}, (9a)

[K]C =[Kij ], with Kij =0·5Nb{Kt +Kr (p/L)2mimj (−1)i− j}, (9b)

Figure 5. The pass-bands of a periodically stiffened beam. ——, Stiffened beam with Mt , Ir , Kt and Kr , beam
(e); ····, simply supported beam with Ir and Kr , beam (c); -----, sliding supported beam with Mt and Kt , beam
(d).
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T 3

The bounding frequencies of a periodically stiffened beam: the use of sine and cosine functions

Band m=0 m1 =1 m= p m1 =1999

1 c 0·425355 0·425355 s 0·732863 0·732037
2 s 0·899136 0·902442 c 0·921364 0·921345
3 c 1·836975 1·836978 s 1·564733 1·576018
4 s 2·527358 2·546095 c 2·784051 2·784070

s, Sine functions; c, cosine functions.

where i, j=1, 2, . . . , M*, and M* is the number of the coupled functions used in the
calculation. Let the unknown coefficients, wmi = umi for i=1, 3, 5, . . . , and wmi =−umi for
i=2, 4, 6, . . . , and transfer the system matrices from wmi into umi co-ordinates. This means
pre- and post-multiplying the system matrices by a diagonal matrix S=diag {(−1)i−1},
i=1,2, . . . , M*. The mass and stiffness matrices of the beam itself are unchanged. The
element at the ith row and jth column in equation (8) or equation (9) is multiplied by
(−1)i− j. Thus equation (8) becomes equation (9), or vice versa, and therefore the mass or
stiffness matrices of the two beam systems are the same for a given coupling group of
0Qm1 QNb −1, which means the same frequency pass bands for 0Q mQ p.

The frequencies of these two beams for the coupling groups of m1 =2Nb and m1 =Nb

are different since at m=0 and m= p two types of function represent opposite motions
at the locations of the stiffeners as those of beams (c) and (d), respectively. In fact the two
models are complementary to each other, and together they are able to provide both the
bounding frequencies of a pass-band at m=0 and m= p. The bounding frequencies thus
calculated, together with the frequencies calculated by letting m1 =1 or 1999 with
Nb =2000, are listed in Table 3. It can be seen that the results of using a large value of
Nb agree well with those of using sine and cosine functions at m=0 and m= p.

The discussion so far has demonstrated the use of the proposed method in the analysis
of periodic structures. Simplicity is the most important attraction of the method. The
analysis procedure is not limited by the number of structure elements. When Nb is small,
the results can be interpreted using classical modal analysis theory. When Nb is large, the
results can be handled in groups or pass-bands and interpreted using wave theory.

6. THE EFFECTS OF STIFFENER PROPERTIES ON THE PASS-BANDS

The periodically stiffened beam, beam (e), is studied further by increasing in turn one
of four properties of the stiffeners by factors of 10 and 100 times, while the others remain
constant. The aim of this calculation is to investigate the effect of stiffener properties on
the pass-bands of the beam and to highlight the potential and limits of using the properties
of stiffeners to influence the locations of the pass-bands. All of the pass-bands below l=3
are shown in Figure 6. When mass Mt is increased, it is shown in Figure 6(a) that the first
band gradually moves downwards. The second band approaches the first band of beam
(c). The large masses force the beam to behave as if it was periodically simply supported.
A similar phenomenon may be seen when the rotational inertia Ir is increased (Figure 6(b)).
However, in this case the second band moves close to the first band of beam (d), as Ir resists
the rotation at the joint and forces the beam to behave like a periodically sliding supported
beam. In both cases, the frequency curves of the first bands become very flat, which means,
for a beam of Nb elements, that there are Nb natural frequencies in these narrow frequency
bands. Vibrations in the bands are dominated by the resonance of stiffeners. When the
translation or rotational stiffness, Kt or Kr , is increased (see Figures 3(c) and 3(d)), one
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Figure 6. The effects of stiffners on pass-bands of periodically stiffened beams. ——, Stiffened beam with Mt ,
Ir , Kt and Kr , beam (e). (a) ····, 10Mt ; -----, 100Mt . (b) ····, 10Ir ; -----, 100Ir . (c) ····, 10Kt : -----, 100Kt . (d) ····,
10Kr ; -----, 100Kr .

of the bounding frequencies of the first band moves up until it reaches the original
bounding frequency of the second band. The other end remains unchanged, which is
determined by the nature of the motion at that end. Thus the whole band is close to that
of beam (d) or beam (c), respectively. In all these four cases, the higher the orders of the
bands are, the less the bands are affected by the changes. For example, the fourth band
is shifted insignificantly by the increase of Mt . This is because the motions in the higher
order bands are dominated by the vibrations of beam segments between stiffeners and
therefore are not sensitive to the changes.
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7. CONCLUSIONS

The relations between the proposed method and the theory of infinite periodic structures
have been discussed. It has been shown that the proposed method is in fact a very useful
approximate approach for calculating not only the natural frequencies and modes of finite
periodic structures but also the pass-bands of infinite periodic structures as a function of
the phase constant.

The example calculations and discussions based on various periodic beam structures
have shown the influence of stiffeners on the pass-bands of the structures. These discussions
provide some useful indications of the possibilities and limitations of tuning a pass-band
of a periodically stiffened structure by means of tuning the properties of the stiffeners. It
has shown that it is possible to use the stiffeners to change the location and width of the
pass-bands of a periodic system. For example, the pass-bands of beam (a) can be narrowed
by adding Ir and Kr . The bounding frequencies of a pass-band corresponding to m=0 and
m= p are controlled by either the rotational inertia and stiffness or the mass and transverse
stiffness of the stiffeners. They may be increased or decreased by changing the
corresponding properties of the stiffeners. However, significant changes to them may only
be achieved for the lower order pass-bands, say the first two bands, by means of changing
the properties of stiffeners. This is because the motions in the higher order bands are
dominated by inter-stiffener motions and are close to those in a periodically sliding
supported structure.
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APPENDIX A: THE EXPRESSIONS FOR A PERIODICALLY SLIDING SUPPORTED
BEAM

The assumed displacement in this case is

w(x)= s
a

m=0

wm cos (mpx/L), (A1)

where w(x) is the beam flexural displacement and L is the length of the beam. m indicates
the number of half cosine waves in the shape of the corresponding prescribed function,
and wm is an unknown coefficient associated with the function. The mass and stiffness
matrices are diagonal, and the diagonal elements are, for mi $ 0,

Mi =0·5rLA[1+ (I/A)(mip/L)2], Ki =0·5rLEI(mip/L)4 (A2a, b)



    , 2 583

and if mi =0,

Mi = rLA, Ki =0, (A3a, b)

where r is the beam mass density. A and I are the cross-sectional area and the second
moment of area of the beam, respectively. E is Young’s modulus.

The equivalent constraints in this case are

s
a

i=1

miwmi (−1)i−1 =0, for m1 =1, 2, 3, . . . , Nb −1. (A4)

with mi , i=1, 2, . . . , a, defined by the coupling relationships given in equation (12) of
reference [1]. For the coupling groups of m1 =Nb and 2Nb , no constraint is required. The
m=0 term is in the coupling group of mi =2Nb if stiffeners are also added at the supported
points.


